Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
ACM Computing Surveys ; 55(8):1940/01/01 00:00:00.000, 2023.
Article in English | Academic Search Complete | ID: covidwho-2234993

ABSTRACT

The bioinformatics discipline seeks to solve problems in biology with computational theories and methods. Formal concept analysis (FCA) is one such theoretical model, based on partial orders. FCA allows the user to examine the structural properties of data based on which subsets of the dataset depend on each other. This article surveys the current literature related to the use of FCA for bioinformatics. The survey begins with a discussion of FCA, its hierarchical advantages, several advanced models of FCA, and lattice management strategies. It then examines how FCA has been used in bioinformatics applications, followed by future prospects of FCA in those areas. The applications addressed include gene data analysis (with next-generation sequencing), biomarkers discovery, protein-protein interaction, disease analysis (including COVID-19, cancer, and others), drug design and development, healthcare informatics, biomedical ontologies, and phylogeny. Some of the most promising prospects of FCA are identifying influential nodes in a network representing protein-protein interactions, determining critical concepts to discover biomarkers, integrating machine learning and deep learning for cancer classification, and pattern matching for next-generation sequencing. [ FROM AUTHOR]

2.
Acm Computing Surveys ; 55(8), 2023.
Article in English | Web of Science | ID: covidwho-2194084

ABSTRACT

The bioinformatics discipline seeks to solve problems in biology with computational theories and methods. Formal concept analysis (FCA) is one such theoretical model, based on partial orders. FCA allows the user to examine the structural properties of data based on which subsets of the dataset depend on each other. This article surveys the current literature related to the use of FCA for bioinformatics. The survey begins with a discussion of FCA, its hierarchical advantages, several advanced models of FCA, and lattice management strategies. It then examines how FCA has been used in bioinformatics applications, followed by future prospects of FCA in those areas. The applications addressed include gene data analysis (with next-generation sequencing), biomarkers discovery, protein-protein interaction, disease analysis (including COVID-19, cancer, and others), drug design and development, healthcare informatics, biomedical ontologies, and phylogeny. Some of the most promising prospects of FCA are identifying influential nodes in a network representing protein-protein interactions, determining critical concepts to discover biomarkers, integrating machine learning and deep learning for cancer classification, and pattern matching for next-generation sequencing.

3.
Front Genet ; 12: 636441, 2021.
Article in English | MEDLINE | ID: covidwho-1259343

ABSTRACT

With the availability of COVID-19-related clinical data, healthcare researchers can now explore the potential of computational technologies such as artificial intelligence (AI) and machine learning (ML) to discover biomarkers for accurate detection, early diagnosis, and prognosis for the management of COVID-19. However, the identification of biomarkers associated with survival and deaths remains a major challenge for early prognosis. In the present study, we have evaluated and developed AI-based prediction algorithms for predicting a COVID-19 patient's survival or death based on a publicly available dataset consisting of clinical parameters and protein profile data of hospital-admitted COVID-19 patients. The best classification model based on clinical parameters achieved a maximum accuracy of 89.47% for predicting survival or death of COVID-19 patients, with a sensitivity and specificity of 85.71 and 92.45%, respectively. The classification model based on normalized protein expression values of 45 proteins achieved a maximum accuracy of 89.01% for predicting the survival or death, with a sensitivity and specificity of 92.68 and 86%, respectively. Interestingly, we identified 9 clinical and 45 protein-based putative biomarkers associated with the survival/death of COVID-19 patients. Based on our findings, few clinical features and proteins correlate significantly with the literature and reaffirm their role in the COVID-19 disease progression at the molecular level. The machine learning-based models developed in the present study have the potential to predict the survival chances of COVID-19 positive patients in the early stages of the disease or at the time of hospitalization. However, this has to be verified on a larger cohort of patients before it can be put to actual clinical practice. We have also developed a webserver CovidPrognosis, where clinical information can be uploaded to predict the survival chances of a COVID-19 patient. The webserver is available at http://14.139.62.220/covidprognosis/.

SELECTION OF CITATIONS
SEARCH DETAIL